1917.(Hard)Leetcodify Friends Recommendations

Table: Listens

+-------------+---------+
| Column Name | Type    |
+-------------+---------+
| user_id     | int     |
| song_id     | int     |
| day         | date    |
+-------------+---------+
There is no primary key for this table. It may contain duplicates.
Each row of this table indicates that the user user_id listened to the song song_id on the day day.

Table: Friendship

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| user1_id      | int     |
| user2_id      | int     |
+---------------+---------+
(user1_id, user2_id) is the primary key for this table.
Each row of this table indicates that the users user1_id and user2_id are friends.
Note that user1_id < user2_id.

Write an SQL query to recommend friends to Leetcodify users. We recommend user x to user y if:

  • Users x and y are not friends, and

  • Users x and y listened to the same three or more different songs on the same day.

Note that friend recommendations are unidirectional, meaning if user x and user y should be recommended to each other, the result table should have both user x recommended to user y and user y recommended to user x. Also, note that the result table should not contain duplicates (i.e., user y should not be recommended to user x multiple times.).

Return the result table in any order.

The query result format is in the following example.

Example 1:

Input: 
Listens table:
+---------+---------+------------+
| user_id | song_id | day        |
+---------+---------+------------+
| 1       | 10      | 2021-03-15 |
| 1       | 11      | 2021-03-15 |
| 1       | 12      | 2021-03-15 |
| 2       | 10      | 2021-03-15 |
| 2       | 11      | 2021-03-15 |
| 2       | 12      | 2021-03-15 |
| 3       | 10      | 2021-03-15 |
| 3       | 11      | 2021-03-15 |
| 3       | 12      | 2021-03-15 |
| 4       | 10      | 2021-03-15 |
| 4       | 11      | 2021-03-15 |
| 4       | 13      | 2021-03-15 |
| 5       | 10      | 2021-03-16 |
| 5       | 11      | 2021-03-16 |
| 5       | 12      | 2021-03-16 |
+---------+---------+------------+
Friendship table:
+----------+----------+
| user1_id | user2_id |
+----------+----------+
| 1        | 2        |
+----------+----------+
Output: 
+---------+----------------+
| user_id | recommended_id |
+---------+----------------+
| 1       | 3              |
| 2       | 3              |
| 3       | 1              |
| 3       | 2              |
+---------+----------------+
Explanation: 
Users 1 and 2 listened to songs 10, 11, and 12 on the same day, but they are already friends.
Users 1 and 3 listened to songs 10, 11, and 12 on the same day. Since they are not friends, we recommend them to each other.
Users 1 and 4 did not listen to the same three songs.
Users 1 and 5 listened to songs 10, 11, and 12, but on different days.

Similarly, we can see that users 2 and 3 listened to songs 10, 11, and 12 on the same day and are not friends, so we recommend them to each other.

来源:力扣(LeetCode)

链接:https://leetcode-cn.com/problems/leetcodify-friends-recommendations

著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

Solution

with rec as (
SELECT user_id, recommended_id
FROM
(
	SELECT l1.user_id user_id, l2.user_id recommended_id, l2.song_id, l2.day
	FROM  Listens l1 INNER JOIN Listens l2 on 
	l1.user_id != l2.user_id AND 
	l1.song_id = l2.song_id AND 
	l1.`day`=l2.`day`
	ORDER BY user_id, recommended_id
) t
GROUP BY user_id, recommended_id, day
HAVING COUNT(DISTINCT song_id) >=3 
)

SELECT * 
from rec r1	
WHERE (user_id, recommended_id) not in (SELECT user1_id, user2_id FROM Friendship UNION SELECT user2_id,user1_id FROM Friendship);

Schema

Create table If Not Exists Listens (user_id int, song_id int, day date);
Create table If Not Exists Friendship (user1_id int, user2_id int);
Truncate table Listens;
insert into Listens (user_id, song_id, day) values ('1', '10', '2021-03-15');
insert into Listens (user_id, song_id, day) values ('1', '11', '2021-03-15');
insert into Listens (user_id, song_id, day) values ('1', '12', '2021-03-15');
insert into Listens (user_id, song_id, day) values ('2', '10', '2021-03-15');
insert into Listens (user_id, song_id, day) values ('2', '11', '2021-03-15');
insert into Listens (user_id, song_id, day) values ('2', '12', '2021-03-15');
insert into Listens (user_id, song_id, day) values ('3', '10', '2021-03-15');
insert into Listens (user_id, song_id, day) values ('3', '11', '2021-03-15');
insert into Listens (user_id, song_id, day) values ('3', '12', '2021-03-15');
insert into Listens (user_id, song_id, day) values ('4', '10', '2021-03-15');
insert into Listens (user_id, song_id, day) values ('4', '11', '2021-03-15');
insert into Listens (user_id, song_id, day) values ('4', '13', '2021-03-15');
insert into Listens (user_id, song_id, day) values ('5', '10', '2021-03-16');
insert into Listens (user_id, song_id, day) values ('5', '11', '2021-03-16');
insert into Listens (user_id, song_id, day) values ('5', '12', '2021-03-16');
Truncate table Friendship;
insert into Friendship (user1_id, user2_id) values ('1', '2');

Last updated